Export production from ocean color

Toby K. Westberry¹
Mike J. Behrenfeld¹
David A. Siegel²
Emmanuel Boss³

¹Department of Botany & Plant Pathology, Oregon State University ²Institute for Computational Earth System Science, University of California Santa Barbara ³School of Marine Sciences, University of Maine

Why? (1)

What is the fate of net primary production (NPP)? (i.e., export v. recycling)

from Chisholm (2000)

Why? (2)

In situ observational studies

- ¹⁵N incubations
- Sediment traps
- Geochemical balances
- ⁻ ²³⁴Th inventories

Eppley & Peterson (1979) Suess et al. (1980) Buesseler et al. (1998)

Satellite based

- Applications of empirical results
- [Chl], NPP, and SST are not sufficient

Falkowski et al. (1998) Iverson et al. (2000) Goes et al. (2000), (2004)

Ecosystem models

- Assumptions
- Simplistic representations

Fasham et al. (1990) Laws et al. (2000) Dunne et al. (2005)

How? (1) – CbPM Overview

<u>Carbon-based Production Model (CbPM)</u>

(Behrenfeld et al., 2005; Westberry et al., submitted to GBC)

- 1. Invert ocean color data to estimate Chl a & b_{bp}(443) (Garver & Siegel, 1997; Maritorena et al., 2002)
- 2. Relate b_{bp}(443) to phytoplankton carbon biomass, C
- 3. Use Chl:C to infer physiology (photoacclimation & nutrient stress)
- 4. Estimate phytoplankton growth rate (μ) and NPP

$$NPP = \mu \times C$$

How? (2) – CbPM Details

We can push model vertically through the water column:

- Spectral accounting for underwater light field
- Cells photoacclimate through the water column
- Nutrient-stress decays as nitracline is neared (using climatological nutrient fields)

**Westberry et al., (in review GBC)

How? (2) – CbPM Details

We can push model vertically through the water column:

- Spectral accounting for underwater light field
- Cells photoacclimate through the water column
- Nutrient-stress decays as nitracline is neared (using climatological nutrient fields)

**Westberry et al., (submitted to GBC)

CbPM (1) - Results & Validation

HOT

BATS

CbPM (2) – Results & Validation

**Westberry et al., (submitted to GBC)

CbPM (3) - SNPP Patterns

• Both spatial <u>AND</u> temporal patterns of NPP are different wrt Chl-based model (VGPM, Behrenfeld and Falkowski, 1997)

 Onset and peak of blooms can be delayed (~1-2 months)

How to assess export?

- 1. Apply **new** CbPM patterns to existing empirical export algorithms (i.e., Laws et al., 2000; Dunne et al., 2005)
- 2. Use biomass (C) and growth rate (μ) in addition to NPP to construct a mass balance for phytoplankton C in the mixed layer

Export – empirical (1)

• Annual particle export predicted from Laws et al. (2000)

Export – empirical (2)

Fraction of total export

	VGPM	CBPM
> 60°N	46%	22%
30°N - 60°N	22%	19%
0° - 30°N	10%	11%
0° - 30°S	8%	12%
30°S - 60°S	6%	14%
> 60°S	8%	23%
Total (Gt C yr ⁻¹)	10.6	11.2

• CbPM suggests much <u>more</u> NPP in So. Ocean and <u>less</u> in N. hemisphere high latitudes and upwelling regions

NPP to Export – mechanistic (1)

$$\frac{dC}{dt} = \mu C - [advection + dilution + export + recycling]$$

↓ Losses

NPP to Export – mechanistic (1)

$$\frac{dC}{dt} = \mu C - \left[\lambda_{aa} + \lambda_{dil} + \lambda_{sink} + \lambda_{graz}\right]$$
Biomass NPP Losses accumulation

Export – Dilution

Mixed layer phytoplankton C lost due to dilution

$$\lambda_{dil} = \frac{\int_{0}^{MLD_{t}} C_{z} dz}{MLD_{t+1}} (MLD_{t+1} - MLD_{t})$$

NOTE: only valid when mixed layer deepens. No corresponding process when mixed layer shoals

Export – Dilution

• Change (%) in ML phytoplankton C due to ML deepening

Export – mechanistic (2)

- World Ocean Atlas 2005 NO₃(z)
- 8day SeaWiFS-derived phytoplankton C and μ (1/3°)

Export – mechanistic (3)

Example 1

$$t_1 \longrightarrow t_2$$

$$1. \ \frac{dNO_3}{dt} = 0$$

2.
$$\frac{d\mu}{dt} \sim 0$$

$$3. \frac{dC}{dt} < 0$$

$$\lambda_{sink} = \frac{dC}{dt}$$

Export – mechanistic (4)

Example 2

$$t_1 \longrightarrow t_2$$

$$1. \ \frac{dNO_3}{dt} < 0$$

2.
$$\frac{d\mu}{dt} \sim 0$$

$$3. \frac{dC}{dt} \le 0$$

$$\lambda_{sink} = \frac{dNO_3}{dt} \left(\frac{C}{N}\right)$$

Export – mechanistic (5)

Example 3

$$t_1 \longrightarrow t_2$$

$$1. \ \frac{dNO_3}{dt} < 0$$

$$2. \ \frac{d\mu}{dt} > 0$$

3.
$$\frac{dC}{dt} \ge 0$$

???
Need to link dµ/dt to nutrient drawdown ???

$$\lambda_{graz} = f\left(\frac{d\mu}{dt}\right) \sim f\left(\frac{dNO_3}{dt}\right)$$

$$\longleftrightarrow$$

$$\lambda_{sink} = \left(\frac{dNO_3}{dt}\right)\left(\frac{C}{N}\right) - \lambda_{graz}$$

Export – N₂ fixation (1)

What about other sources of nutrients?
 N₂ fixation, atmospheric deposition, rivers

Export – N₂ fixation (2)

Westberry and Siegel (2006)

 Can apply areal rates and produce dynamic, global N₂ fixation estimates from satellite

Export – N_2 fixation (3)

Can add N₂ fixation from non-bloom populations also

Westberry and Siegel (2006)

→ 42 TgN yr⁻¹ from blooms + 20 TgN yr⁻¹ non-blooms

(cf, ~ 80 TgN yr⁻¹, Capone et al. (1997) ~ 110 TgN yr⁻¹, Gruber & Sarmiento (1997)

~ 140 TgN yr⁻¹, Deutsch et al. (2007))

Export – END

- CbPM provides critical pieces of information for diagnosing export from satellite (μ , C, NPP)
- Can estimate time varying fields of export from mixing and sinking (haven't solved the whole problem yet)
- Can account for export due to N₂ fixation from satellite (thought to be significant)

toby.westberry@science.oregonstate.edu www.science.oregonstate.edu/ocean.productivity www.science.oregonstate.edu/ecophysiology

EXTRA

CbPM (5) - SNPP Patterns

Spatial (and temporal) patterns of NPP are different compared to Chl-based model (VGPM, Behrenfeld & Falkowski, 1997)

Onset and peak of blooms can be delayed (~1-2 months)

NPP to Export – empirical (1)

• Annual particle export predicted from Laws et al. (2000)

Export – empirical (2)

Total Export (Gt C yr-1)

	VGPM	CBPM
Oligotrophic	1.9 (18%)	3.1 (28%)
Mesotrophic	3.6 (34%)	4.4 (39%)
Eutrophic	5.1 (48%)	3.7 (33%)
Total	10.6	11.2

Fraction of total export

> 60°N	46%	22%
30°N - 60°N	22%	19%
0° - 30°N	10%	11%
0° - 30°S	8%	12%
30°S - 60°S	6%	14%
> 60°S	8%	23%

NPP to Export – mechanistic (2)

Considerations

- 1. Are there nutrients IN the mixed layer?
- 2. Were nutrients entrained into the mixed layer? Drawn down?
- 4. Was there an increase in biomass? Decrease?
- 5. Was there an increase in growth rate? Decrease?

NPP to Export – mechanistic (2)

Considerations

- 1. Are there nutrients IN the mixed layer?
- 2. Were nutrients entrained into the mixed layer?
- 4. Was there an increase in biomass? Decrease?
- 5. Was there an increase in growth rate? Decrease?

